INTEGRA Lightweight Concrete Intertenancy System

Comfort & Safety are paramount features for owners when they are looking at working with Architects & Engineers on a project.

Our central barrier intertenancy wall system is designed for use in medium & high density housing developments which has passed rigorous independent acoustic & fire testing to exceed the requirements of the building code.

The INTEGRA Lightweight Concrete Intertenancy System is a proprietary high-performance wall system that provides you tested systems for resistance to horizontal fire and acoustic separation between adjacent tenancies in the same building.

Enjoy the benefits of our tested, trusted barrier intertenancy walling system for your next project.
SYSTEM FEATURES:

+ All weather construction.
+ Fast installation
+ Low waste
+ 290mm - 336mm max
 Overall wall widths
+ Proprietary acoustic dampening bracket
+ Cost effective – Limited components.
+ Non-specialist trade installation.
+ All systems FRR 120/120/120
+ STC 6 Rw 67 with one system

Innovative design
Integrated systems
Enduring performance

Page 16
INTA120a
Page 17
INTA120b
Page 18
INTA120c
Page 19
INTA120d
Page 20
INTA120e
Page 21
INSA120a
Page 22
INSA120b
Page 23
INSA120c
Page 24
INSA120d
Page 25
INSA120e

P 0800 50 70 40
W reseneconstruction.co.nz
Contents

1. General System Description 7
2. Terminology 7
3. Specification Reference Labelling 8
4. Product Substitution 8
5. Components not supplied 8
6. Scope of use for the INTEGRA Lightweight Concrete Intertenancy System 8
7. Cavity Size 8
8. Compliance with the NZBC 9
 B1 – Structure 9
 B2 – Durability 9
 C1-C6 – Protection from Fire 9
 F2 – Hazardous Building Materials 10
 G6 – Airborne and Impact Sound 10
9. Services 10
10. Exposure to weather during construction 11
11. Materials 11
 Fasteners 11
 Intertenancy Bracket 11
 INTEGRA Panel Central Barrier 11
 PSL AAC Adhesive 11
 Anti-Corrosion Coating 11
 Wall Insulation 11
12. System Variations 11
13. Installation Guidelines 12
 General 12
 Step 1- Framing 12
Step 2 - Installation of brackets
Step 3 - Mixing and Application of mortar, install the bottom row of Integra panel
Step 4 - Installation of Integra Panel in the wall cavity
Step 5 - Screw fixing the panels to the brackets
Step 6 - Install the framing to the other side of the central barrier
Step 7 - Installation of services
Step 8 - Installation of insulation
Step 9 - Installation and finishing of Plasterboard
Step 10 - Finishing services
System specification

15 Typical Uses
Intertenancy Bracket
Vertical Cross Section
Wall Plan
Wall Plan - Panel Join
Wall Elevation
Foundation or Intermediate Floor Slab
Corner - Internal Linings both Sides
Wall Projection - Plan View
T-Junction - Internal Wall meeting Intertenancy Wall
T-Junction - Internenncy Wall meeting External Wall
T-Junction - Intertenancy Wall meeting Internal Corner
Mid-floor
Roof Valley
Roof Ridge
Roof Parapet
Sloping Roof End
Eave
<table>
<thead>
<tr>
<th>Name</th>
<th>FRR</th>
<th>STC</th>
<th>Rw</th>
<th>Linings</th>
<th>Structure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTA120a</td>
<td>120/120/120</td>
<td>64*1</td>
<td>62*2</td>
<td>1 layer of 10mm Plasterboard</td>
<td>Timber</td>
<td>16</td>
</tr>
<tr>
<td>INTA120b</td>
<td>120/120/120</td>
<td>66</td>
<td>65</td>
<td>1 layer of 13mm Plasterboard</td>
<td>Timber</td>
<td>17</td>
</tr>
<tr>
<td>INTA120c</td>
<td>120/120/120</td>
<td>67*1</td>
<td>66*2</td>
<td>2 layers of 10mm Plasterboard</td>
<td>Timber</td>
<td>18</td>
</tr>
<tr>
<td>INTA120d</td>
<td>120/120/120</td>
<td>66</td>
<td>65</td>
<td>1 layer of 10mm Noise Rated Plasterboard</td>
<td>Timber</td>
<td>19</td>
</tr>
<tr>
<td>INTA120e</td>
<td>120/120/120</td>
<td>67</td>
<td>67</td>
<td>1 layer of 13mm Noise Rated Plasterboard</td>
<td>Timber</td>
<td>20</td>
</tr>
<tr>
<td>INSA120a</td>
<td>120/120/120</td>
<td>64</td>
<td>62</td>
<td>1 layer of 10mm Plasterboard</td>
<td>Steel</td>
<td>21</td>
</tr>
<tr>
<td>INSA120b</td>
<td>120/120/120</td>
<td>66</td>
<td>65</td>
<td>1 layer of 13mm Plasterboard</td>
<td>Steel</td>
<td>22</td>
</tr>
<tr>
<td>INSA120c</td>
<td>120/120/120</td>
<td>67</td>
<td>66</td>
<td>2 layers of 10mm Plasterboard</td>
<td>Steel</td>
<td>23</td>
</tr>
<tr>
<td>INSA120d</td>
<td>120/120/120</td>
<td>66</td>
<td>65</td>
<td>1 layer of 10mm Noise Rated Plasterboard</td>
<td>Steel</td>
<td>24</td>
</tr>
<tr>
<td>INSA120e</td>
<td>120/120/120</td>
<td>67</td>
<td>67</td>
<td>1 layer of 13mm Noise Rated Plasterboard</td>
<td>Steel</td>
<td>25</td>
</tr>
</tbody>
</table>

* Tested in accordance with ISO standard 10140-2:2010(E) “Laboratory measurement of sound insulation of building elements - Part 2: Measurement of airborne sound insulation”

1. Determined in accordance with ASTM E413 Classification for Rating Sound Insulation
2. Determined in accordance with ISO 717-1 Acoustics – Rating of sound insulation in buildings and of building elements – Part 1: Airborne sound insulation

All other values calculated
1. General System Description

The INTEGRA Lightweight Concrete Intertenancy System is a proprietary high-performance wall system that provides horizontal fire and acoustic separation between adjacent tenancies in the same building. The core component of the INTEGRA system is a high-tech lightweight concrete panel and intertenancy bracket that is installed between framing that has insulation and plasterboard lining on the outer face.

A cavity is created between the INTEGRA lightweight concrete and the framing through the use of a proprietary Intertenancy Bracket and Dampener.

The INTEGRA Lightweight Concrete Intertenancy System is suitable for the use in medium and high-density housing i.e. Terraced Housing

2. Terminology

AS – Acceptable Solution or Australia Standard
FRR – Fire Resistance Rating
FSTC – Field Sound Transmission Class
NZBC – New Zealand Build Code
NZS – New Zealand Standard
STC – Sound Transmission Class represents a single number system for quantifying the transmission loss through a building element. STC is based upon typical speech and domestic noises, and thus is most applicable to these areas. STC of a building element is measured in approved testing laboratories under ideal conditions.

FSTC - The ‘field’ or in situ measurement of Sound Transmission Class. Building tolerances and flanking noise have an effect on the performance of a partition when it is actually installed, which result in FSTC values lower than the laboratory derived STC values, typically 5 dB less.

Rw - Sound Reduction Index is a number used to rate the effectiveness of a soundproofing system or material

IIC – Impact Insulation Class measures a floor assembly’s ability to absorb impact sound

FIIC - The ‘field’ or in situ measurement of Impact Insulation Class. Building tolerances and flanking noise have an effect on the performance of a partition when it is actually installed, which result in FIIC values lower than the laboratory derived IIC values, typically 5 dB less.

SG – Stress Grade
PPE – Personal Protective Equipment
VM – Verification Method

Sound Insulation - When sound hits a surface, some of the sound energy travels through the material. ‘Sound insulation’ refers to ability of a material to stop sound travelling through it.

Impact Sound - Sound produced by an object impacting directly on a building structure, such as footfall noise or chairs scrapping on a floor.

Flanking Paths/Transmission - Transmission of sound energy through paths adjacent to the building element being considered. For example, sound may be transmitted around a wall by travelling up into the ceiling space and then down into the adjacent room.

Structure-Borne Transmission - The transmission of sound from one space to another through the structure of a building.
3. Specification Reference Labelling
The specification label reference allows a quick reference to a system.
For example

INTA120a
IN = 50mm Integra Panel
T = Timber Frame
A = Acoustic
120 = Fire Resistance Rating
a/b/c/d/e = System Options

4. Product Substitution
The INTEGRA Lightweight Concrete Intertenancy System is a proprietary system that has been carefully designed to New Zealand conditions and has been independently tested and assessed to make sure that it meets the performance criteria as outlined in the NZBC. It is imperative to use only Resene Construction Systems proprietary products where specified and that the design and construction of the Intertenancy System is followed so that you are safe in the knowledge that the level of fire safety, structural and sound performance has been achieved on site.

5. Components not supplied

Plasterboard Linings
The lining to each face of the wall may be any gypsum based plasterboard of at least 10mm thick.

Thermal/Acoustic insulation
The inclusion of thermal/ acoustic insulation in the wall cavities should be either fibreglass, polyester, wool or wool blend.
• Thermally insulate framed walls.
• Fit easily into standard wall constructions, or be easily cut to fit in non-standard constructions.
• Meet the requirements of the New Zealand Building Code (NZBC) for different designs and environments

6. Scope of use for the INTEGRA Lightweight Concrete Intertenancy System

INTEGRA Lightweight Concrete Intertenancy System can be used: -

• Where a Fire Resistance Rating up to 120/120/120 is required.
• Where a minimum STC of at least 55 is required
• Where a maximum loading of 4.5kN/Stud is required
• Where an Intertenancy Wall is up to 12m in height, studs will need to be increased to meet the structural design requirements
• Where a maximum individual floor/ceiling height meets NZS 3604 or if Steel Framing (NASH Handbook Best Practice for Design and Construction of Residential and Low Rise Steel Framing).
• For medium and high-density housing i.e. Terraced Housing
• Where timber or steel studs are specified and are rated to carry the imposed load per stud

The designer should consider the various systems depending on the acoustic and fire performance that is required. The designer should factor in the following:

• Height of the wall
• Cavity size (typically 20mm)
• Potential building movement, earthquake zones
• Any lateral loads
• Any floor loads must be carried solely by the timber framing (i.e. no contact with floor joists and INTEGRA Lightweight Concrete Panels)
• That the framing needs to be designed for the individual project

7. Cavity Size
The INTEGRA Lightweight Concrete Intertenancy System has been designed to utilise a cavity air space of between 20mm - 40mm. This cavity is formed between the framing and the Integra Panel central barrier on both sides of the Intertenancy Wall.
8. Compliance with the NZBC

B1 – Structure

The design and specification for timber framing must be in accordance with the performance requirements of NZBC B1. Framing used in accordance with NZS3604:2011 is compliant in accordance with NZBC B1 and is the best choice to use when using the INTEGRA Lightweight Concrete Intertenancy System. Where the framing falls outside the requirements of NZS3604:2011 we recommend that an engineer is engaged to ensure that structural compliance is met. If Steel Framing is used then E2/AS4 NASH Handbook Best Practice for Design and Construction of Residential and Low Rise Steel Framing should be used.

The INTEGRA Lightweight Concrete panels performs NO STRUCTURAL FUNCTION and that the two timber framed walls forms part of the overall system and must be designed to independently accommodate all the relevant gravity, lateral and face loads that will be present in the building. In relation to the design of the timber framing, the framing must be designed in accordance with B/AST 3.0 Timber (NZS 3604) of B/VM1 6.0 Timber (NZS 3603) or if Steel Framing (E2/AS4 NASH Handbook Best Practice for Design and Construction of Residential and Low Rise Steel Framing).

The INTEGRA Lightweight Concrete Intertenancy System can be used on either a loadbearing or non-loadbearing wall. The INTEGRA central barrier within the wall system should be treated as non-loadbearing.

During construction provision should be made for temporary bracing particularly if the panel could be subjected to a high wind load or when installing panel continuously over a single storey in height where the second framed walls has not been installed.

B2 – Durability

Under normal conditions of internal use, the INTEGRA Lightweight Concrete Intertenancy System will achieve a service life in excess of 50 years and satisfy the requirements of NZBC B2.

C1-C6 – Protection from Fire

The INTEGRA Lightweight Concrete Intertenancy System can be used to provide passive fire protection in accordance with the requirement of NZBC C1-C6 – Protection from Fire. The INTEGRA Lightweight Concrete Intertenancy System has been peer reviewed and meets the provisions of NZBC C1-C6 when kept within the scope as outlined in Section 6 - Scope of use for the INTEGRA Lightweight Concrete Intertenancy System.

The INTEGRA Lightweight Concrete Intertenancy System has been designed for one side to collapse in a fire, leaving the central barrier and the opposing wall in place. The INTEGRA Lightweight Concrete Intertenancy System Brackets are intended to melt on the fire side only, allowing collapse without damage to the remaining system.

The fire resistance rating has been established through a full-scale fire test at BRANZ. This fire report is available on request.

Fire Cells and Fire Resistance Ratings

1. The fire engineer for the project will determine where the fire cells are in the building and what fire resistance ratings (FRRs) are required.

2. In most cases, an INTEGRA Lightweight Concrete Intertenancy wall will form the common wall of a fire cell between adjacent tenancies and will require a two-way FRR.

3. The INTEGRA Lightweight Concrete Intertenancy System has been tested in accordance with AS 1530.4: 2014 and achieves a 120 / 120 / 120 minute FRR.

4. The elements of the FRR required will depend on the specific scenario in the building in question. For example, if fire sprinklers are present and the wall is non-loadbearing, the INTEGRA Lightweight Concrete Intertenancy System may not require structural adequacy or insulation ratings, i.e. the INTEGRA Lightweight Concrete Intertenancy System is only required to provide a - / 120 / - FRR.
5. Specific requirements are contained within the Acceptable Solution document that applies to the building in question.

Control of Internal Fire and Smoke Spread

1. Where the INTEGRA Lightweight Concrete Intertenancy System is loadbearing, the plasterboard and framing on the fire side of the INTEGRA panels will have to achieve the specified FRR, independent of the INTEGRA panels, to achieve structural stability during fire. This will also require any services penetration through the plasterboard to be fire stopped – specialist advice will be required from the fire engineer in this case.

2. In some applications, the finished INTEGRA Lightweight Concrete Intertenancy System will be required to achieve a material group number rating, which will be specified by the fire engineer. Table A1 in C/VM2 specifies that paper-faced gypsum plasterboard that is ≥ 9.5 mm thick, ≥ 400 kg/m³ core density, < 5% organic contribution to board, and with a waterborne or solvent based point coating of ≤ 0.4 mm thick, will achieve a group number G2-S rating.

3. It is also very important that the FRR of the INTEGRA Lightweight Concrete Intertenancy System is not compromised at the junction to fire rated floors (at base of wall) and floors/ceilings (at top of wall), and where concealed spaces and cavities occur.

Control of external fire spread

1. In situations where the INTEGRA system forms part of an external wall, the fire engineer for the project will specify aspects such as the required FRRs and percentage of unprotected openings.

2. Exterior surface finish requirements will apply where the INTEGRA panel is the external cladding for the building.

F2 – Hazardous Building Materials

Under normal conditions of internal use, the INTEGRA Lightweight Concrete Intertenancy System does not constitute a health hazard and meets the provisions of the NZBC Clause F2.

G6 – Airborne and Impact Sound

The INTEGRA Lightweight Concrete Intertenancy System provides airborne noise control ratings that exceed the minimum requirements of NZBC Clause G6 – Airborne and Impact Sound. The INTEGRA Lightweight Concrete Intertenancy System has been peer reviewed and meets the provisions of NZBC G6 when kept within the scope (Section 6 - Scope of use for the INTEGRA Lightweight Concrete Intertenancy System).

The STC ratings have been established through a full-scale sound test at Auckland University. These reports are available on request.

The INTEGRA wall system does not require an STC rating when used within a roof/uninhabitable space.

Any rigid air barriers that bridge over an Intertenancy Wall should be discontinued at this point and a flexible underlay installed.

Ensure that any brackets installed on the framed wall are NOT mirrored on the second wall, the brackets on the second wall should be installed on opposing studs or where they are at least 300mm apart from each other.

9. Services

Under no circumstances should any services penetrate the INTEGRA Lightweight Concrete panels. Services may however be concealed within the framed section of the wall system, subject to the following constraints.

- A minimum of 10mm clearance should be maintained between any penetrations and the central barrier.

- Penetrations should be no larger than 65mm diameter or 90×50mm through the plasterboard lining. There is no requirement to firestop these penetrations.

- That no more than 2 penetrations per 600mm bay of framing are made.
10. Exposure to weather during construction

The INTEGRA Lightweight Concrete Intertenancy System can be exposed to the elements for up to 3 months before the building is closed in.

Should the wall be exposed to the weather for a longer period then we recommend applying Resene Aquapel over the entire surface of the INTEGRA Lightweight Concrete Panels.

11. Materials

Fasteners

INTEGRA Lightweight Concrete Intertenancy System Screws must be used; these are available in the following sizes for both timber and steel framing

- 12gx75mm Galvanised with EPDM Washer - Used to secure the Integra Panel to the Intertenancy Bracket
- 12gx45mm Galvanised with EPDM Washer - Used to secure the Intertenancy Bracket to the structure

Intertenancy Bracket

- Aluminium bracket
- Supplied in boxes of 50 brackets including the above fasteners.
- 50mm wide
- 3mm Thick
- 75mm x 50mm legs
- Includes a sound and heat resistant dampener with spacers to limit contact to the surface being attached to

INTEGRA Panel Central Barrier

- Thermal Conductivity: 0.12 W/(mk)
- Thermal Resistivity, R: 0.42m²K/W
- Substrate Thickness: 50mm
- Weight: 26kg/m², 34kg per panel
- 2200mm long, 600mm wide
- Non-Combustible (AS1530.1-1994)

PSL AAC Adhesive

- Supplied in 20kg bags
- Used for bonding AAC together, patching panel, and securing the panel to a concrete foundation

Anti-Corrosion Coating

- Use to prime any exposed steel that may be exposed when the INTEGRA panel is cut to length or width
- Zinc Rich protective Coating such as Wurth Zinc Spray Light Perfect

Wall Insulation

In order to achieve the stated ratings the acoustic absorption product would need to be fibrous (glass fibre, polyester fibre or wool) and would need to have a minimum thickness of 75 mm.

- Thermally insulate timber framed walls.
- Fit easily into standard wall constructions, or be easily cut to fit in non-standard constructions.
- Meet the requirements of the New Zealand Building Code (NZBC) for different designs and environments

12. System Variations

- Increasing the thickness of the panel from 50mm to 75mm
- Increase in timber density
- Increase in cross-sectional dimension of the framing element(s)
- Decrease in stud spacing
- Replace the timber studs with steel studs of equivalent structural strength to carry the imposed load per stud
13. Installation Guidelines

General

Before commencing any work onsite, ensure the site is clean and tidy. Where possible try and minimise any vibration or impact directly or indirectly on the INTEGRA during installation this will assist with minimising mortar between panels being broken before it cures/sets.

Step 1 - Framing

All framing should be installed as specified in the construction drawings and should be straight and plumb. The INTEGRA system requires framing to be set out in accordance with NZS3604:2011 for timber frames or E2/AS4 (NASH Handbook: Best Practice for Design and Construction of Residential and Low-Rise Steel Framing) for steel framed walls.

Install the framing to one side of the Intertenancy Wall first.

It is recommended to install strapping tape to the framing prior to installing the central barrier to ensure the insulation is held in place.

Step 2 - Installation of brackets

You will need two brackets per panel with spacing governed by stud centres (approximately 1 bracket per lineal metre) of wall to secure a row of panel to one frame.

Starting at one end of the framing, install a bracket to the end stud so that it is located 300mm from the Finished Floor Level. Ensure that the face of the dampener on the bracket has been installed 20-40mm (depending on the specified cavity size) off the line of the framing.

Use the Resene Construction Systems 12gx45mm Galvanised screw with EPDM Washer to secure the Intertenancy Bracket to the structure.

Every second stud should have a bracket installed in the same location. The use of a string line will help to ensure your brackets are kept straight.

Once you have located the first row of panels you can continue to install brackets at 600 centres up the stud starting from the first bracket to the stud. A useful way to do this is to install the bottom and top brackets on the wall and then use a straight edge to align the brackets and ensure they are all on the same plane. You can use a level to ensure these are installed in a plumb position.
Step 3 - Mixing and Application of mortar, install the bottom row of Integra panel

Mix up 2-3 kg’s of Resene Construction Systems PSL AAC Adhesive to get you started, mix to a smooth consistency and when you can run your finger through it and the plaster remains standing you are ready to apply it (approximately 4 litres of water per 20kg bag)

The first row of panels must be bedded to the concrete floor slab using AAC Adhesive. To do this, apply AAC Adhesive to the long edge of an Integra Panel using a spatula/broad-knife.

Then lift and position the panel so that it is installed horizontally and is resting against two brackets in a plumb position. Ensure that there are no gaps between the panel and the floor slab.

Step 4 - Installation of Integra Panel in the wall cavity

Continue along the length of the wall installing the Integra panel to form the central barrier. Ensure that vertical edge of the panels is bonded together using the AAC Adhesive.

Ensure that all full-length panels have 2 clips per panel to secure the panel to one side of the framing. Where you have a section of panel that is less than 600mm then no bracket is required, you can rely on the AAC adhesive to bond the panels together where this occurs.

Any panels can be cut onsite using a circular saw equipped with a diamond tipped blade. Ensure that a dust extraction unit is used as well as PPE (including glasses, dust masks, hearing protection and gloves).
Any steel reinforcement that is exposed during the cutting must be coated with an anti-corrosion coating.

Any minor damage should be patched using the AAC Adhesive; this will ensure the acoustic performance and fire protection is maintained.

Step 5 - Screw fixing the panels to the brackets

As each panel is positioned, secure it to the corresponding intertenancy brackets. The screw is installed blind from the far side of the panel. To do this drill a 2-3mm pilot hole through the existing hole in the intertenancy bracket and through the Integra Panel Central barrier.

![Image 7 – Drill a pilot hole through the panel](image7.png)

Use a Resene Construction Systems 12gx75mm Galvanised screw with EPDM Washer to secure the Integra Panel to the Intertenancy Bracket through the pilot hole you have drilled.

![Image 8 – Screw through the panel into the bracket](image8.png)

Continue to install the central barrier of Integra Panel in a stacker bond pattern (each sheet on top of each other so that the joins align) using the AAC Adhesive to bond the panels together.

![Image 9 – Panel installed in a Stacker Bond pattern](image9.png)

Step 6 – Install the framing to the other side of the central barrier

Once you have installed the central barrier 4 panels high it is recommended to install the wall on the other side of the barrier. Once this is installed the brackets can be installed. The brackets should be installed so that they are not directly opposite the brackets on the opposing side.
Step 9 - Installation and finishing of Plasterboard

Plasterboard can be fixed either vertically or horizontally. Sheets shall be touch fitted. When fixing vertically, full height sheets shall be used where possible. All sheet joints must be formed over solid timber framing.

A bead of acoustic sealant is required around the perimeter of the wall lining.

If the wall lining forms part of the structural bracing system, the lining type and fixings must comply with the published bracing system. Check requirements for specific bracing element hold down connections.

Jointing and finishing of plasterboard is to be as per the manufacturer’s instructions to meet requirements of AS/NZS 2589:2017.

Step 10 - Finishing services

Any gaps through the plasterboard should be sealed using an acoustic rated sealant. The installation of the sealant should be completed in accordance with the manufacturer’s specifications.

If the framing is loadbearing (i.e. supporting a floor from a different fire cell) then all service penetrations will need to be fire stopped. Please consult with your fire engineer around the best method of doing this.

Special Notes when installing with Steel Framing

There will be occasions with Steel Framing setouts where a small proportion of the wall has no insulation installed in the voids of the steel framing. We can verify that the rating of the wall will not be compromised by the framing arrangement at the junctions. However we recommend that where two such details (for example T-Junction - Internal Wall meeting Intertenancy Wall and Corner - Internal Linings both Sides) are located within 1.8 metres of each other that fibrous insulation is placed within the steel stud cavity or the details are reviewed by an acoustic engineer.
INTA120a - Timber Frame – 120 minute - INTEGRA Lightweight Concrete with 1 layer of 10mm Standard Plasterboard to both framing lines

Framing to comply with

- NZBC B1 – Structure: AS1 Clause 3 – Timber (NZS 3604) or VM1 Clause 6 – Timber (NZS 3603)
- NZBC B2 – Durability: AS1 Clause 3.2 – Timber (NZS 3602)
- Studs at 600mm centres maximum
- Nogs/Dwangs at 800mm centres
- Framing dimensions and height as determined by NZS 3604 stud and top plate tables for loadbearing walls.

Barrier to comply with

- NZBC Clause B1 Structure
- NZBC Clause B2 Durability
- NZBC Clause C1-C6 – Protection from Fire
- NZBC Clause F2 Hazardous Building Materials
- NZBC Clause G6 Airborne and Impact Sound

Linings

- 1 layer of 10mm Standard Plasterboard on the outside of each framing line.
- Vertical fixing permitted. Sheets shall be touch fitted.
- When fixing vertically, full height sheets shall be used where possible.
- All sheet joints must be formed over solid timber framing.
- If the wall lining forms part of the structural bracing system, the lining type and fixings must comply with the published bracing system. Check requirements for specific bracing element hold down connections.

Lining Fixings

- 32mm x 6g Drywall Screws
- Lining Fastener Centres 300mm centres to each stud and plate.
- Place fasteners 12mm from bound sheet edges and 18mm from sheet ends.
- If fixing sheets horizontally, fasteners to be placed at 300mm centres to top and bottom plates and perimeter studs. Install pairs of single fasteners to each stud where horizontal joint crosses.

Acoustic Sealant

- A bead of acoustic sealant is required around the perimeter of the wall lining.

Jointing

- Jointing and finishing of plasterboard is to be as per the manufacturer’s instructions to meet requirements of AS/NZS 2589:2017.
INTA120b - Timber Frame – 120 minute - INTEGRA Lightweight Concrete with 1 layer of 13mm Standard Plasterboard to both framing lines

Framing to comply with

- NZBC B1 – Structure: AS1 Clause 3 – Timber (NZS 3604) or VM1 Clause 6 – Timber (NZS 3603)
- NZBC B2 – Durability: AS1 Clause 3.2 – Timber (NZS 3602)
- Studs at 600mm centres maximum
- Nogs/Dwangs at 800mm centres
- Framing dimensions and height as determined by NZS 3604 stud and top plate tables for loadbearing walls.

Barrier to comply with

- NZBC Clause B1 Structure
- NZBC Clause B2 Durability
- NZBC Clause C1-C6 – Protection from Fire
- NZBC Clause F2 Hazardous Building Materials
- NZBC Clause G6 Airborne and Impact Sound

Linings

- 1 layer of 13mm Standard Plasterboard on the outside of each framing line
- Vertical fixing permitted. Sheets shall be touch fitted.
- When fixing vertically, full height sheets shall be used where possible.
- All sheet joints must be formed over solid timber framing.
- If the wall lining forms part of the structural bracing system, the lining type and fixings must comply with the published bracing system. Check requirements for specific bracing element hold down connections.

Lining Fixings

- 32mm x 6g Drywall Screws
- Lining Fastener Centres 300mm centres to each stud and plate.
- Place fasteners 12mm from bound sheet edges and 18mm from sheet ends.
- If fixing sheets horizontally, fasteners to be placed at 300mm centres to top and bottom plates and perimeter studs. Install pairs of single fasteners to each stud where horizontal joint crosses.

Acoustic Sealant

- A bead of acoustic sealant is required around the perimeter of the wall lining.

Jointing

- Jointing and finishing of plasterboard is to be as per the manufacturer’s instructions to meet requirements of AS/NZS 2589:2017.
INTA120c - Timber Frame – 120 minute - INTEGRA Lightweight Concrete with 2 layers of 10mm Standard Plasterboard to both framing lines

Framing to comply with

- NZBC B1 – Structure: AS1 Clause 3 – Timber (NZS 3604) or VM1 Clause 6 – Timber (NZS 3603)
- NZBC B2 – Durability: AS1 Clause 3.2 – Timber (NZS 3602)
- Studs at 600mm centres maximum
- Nogs/Dwangs at 800mm centres
- Framing dimensions and height as determined by NZS 3604 stud and top plate tables for loadbearing walls.

Barrier to comply with

- NZBC Clause B1 Structure
- NZBC Clause B2 Durability
- NZBC Clause C1-C6 – Protection from Fire
- NZBC Clause F2 Hazardous Building Materials
- NZBC Clause G6 Airborne and Impact Sound

Linings

- 2 layers of 10mm Standard Plasterboard on the outside of each framing line
- Vertical fixing permitted. Sheets shall be touch fitted.
- When fixing vertically, full height sheets shall be used where possible.
- All sheet joints must be formed over solid timber framing.
- Outer layer sheets can be fixed vertically or horizontally. If fixed vertically, outer layer sheet joints must be offset 600mm from those of the inner layer. Use full height sheets where possible.
- If the wall lining forms part of the structural bracing system, the lining type and fixings must comply with the published bracing system. Check requirements for specific bracing element hold down connections.

Lining Fixings

- Inner Layer: 32mm x 6g Drywall Screws
- Outer Layer: 41mm x 6g Drywall Screws
- Place fasteners 12mm from bound sheet edges and 18mm from sheet ends.
- Fix inner sheets vertically. Where sheet end butt joints are unavoidable they must be formed over framing. Use full height sheets where possible.
- Outer layer: If fixing sheets horizontally, fasteners to be placed at 300mm centres to top and bottom plates and perimeter studs. Install pairs of single fasteners to each stud where horizontal joint crosses. Adhesive fix the outer layer to the inner layer with daubs of plasterboard adhesive at 300mm centres. Do not place plasterboard adhesive at sheet edges or within 200mm of screw fixings.

Acoustic Sealant

- A bead of acoustic sealant is required around the perimeter of the inner wall lining.

Jointing

- Jointing and finishing of plasterboard is to be as per the manufacturer’s instructions to meet requirements of AS/NZS 2589:2017.
INTA120d - Timber Frame – 120 minute - INTEGRA Lightweight Concrete with 1 layer of 10mm Noise Rated Plasterboard to both framing lines

Framing to comply with

- NZBC B1 – Structure: AS1 Clause 3 – Timber (NZS 3604) or VM1 Clause 6 – Timber (NZS 3603)
- NZBC B2 – Durability: AS1 Clause 3.2 – Timber (NZS 3602)
- Studs at 600mm centres maximum
- Nogs/Dwangs at 800mm centres
- Framing dimensions and height as determined by NZS 3604 stud and top plate tables for loadbearing walls.

Barrier to comply with

- NZBC Clause B1 Structure
- NZBC Clause B2 Durability
- NZBC Clause C1-C6 – Protection from Fire
- NZBC Clause F2 Hazardous Building Materials
- NZBC Clause G6 Airborne and Impact Sound Linings

Linings

- 1 layer of 10mm Noise Rated Plasterboard on the outside of each framing line
- Vertical fixing permitted. Sheets shall be touch fitted.
- When fixing vertically, full height sheets shall be used where possible.
- All sheet joints must be formed over solid timber framing.
- If the wall lining forms part of the structural bracing system, the lining type and fixings must comply with the published bracing system. Check requirements for specific bracing element hold down connections.

Lining Fixings

- 32mm x 6g Drywall Screws
- Lining Fastener Centres 300mm centres to each stud and plate.
- Place fasteners 12mm from bound sheet edges and 18mm from sheet ends.
- If fixing sheets horizontally, fasteners to be placed at 300mm centres to top and bottom plates and perimeter studs. Install pairs of single fasteners to each stud where horizontal joint crosses.

Acoustic Sealant

- A bead of acoustic sealant is required around the perimeter of the wall lining.

Jointing

- Jointing and finishing of plasterboard is to be as per the manufacturer’s instructions to meet requirements of AS/NZS 2589:2017.
INTA120e - Timber Frame – 120 minute - INTEGRA Lightweight Concrete with 1 layer of 13mm Noise Rated Plasterboard to both framing lines

Framing to comply with

- NZBC B1 – Structure: AS1 Clause 3 – Timber (NZS 3604) or VM1 Clause 6 – Timber (NZS 3603)
- NZBC B2 – Durability: AS1 Clause 3.2 – Timber (NZS 3602)
- Studs at 600mm centres maximum
- Nogs/Dwangs at 800mm centres
- Framing dimensions and height as determined by NZS 3604 stud and top plate tables for loadbearing walls.

Barrier to comply with

- NZBC Clause B1 Structure
- NZBC Clause B2 Durability
- NZBC Clause F2 Hazardous Building Materials Linings

Lining

- 1 layer of 13mm Noise Rated Plasterboard on the outside of each framing line
- Vertical fixing permitted. Sheets shall be touch fitted.
- When fixing vertically, full height sheets shall be used where possible.
- All sheet joints must be formed over solid timber framing.
- If the wall lining forms part of the structural bracing system, the lining type and fixings must comply with the published bracing system. Check requirements for specific bracing element hold down connections.

Lining Fixings

- 32mm x 6g Drywall Screws
- Lining Fastener Centres 300mm centres to each stud and plate.
- Place fasteners 12mm from bound sheet edges and 18mm from sheet ends.
- If fixing sheets horizontally, fasteners to be placed at 300mm centres to top and bottom plates and perimeter studs. Install pairs of single fasteners to each stud where horizontal joint crosses.

Acoustic Sealant

- A bead of acoustic sealant is required around the perimeter of the wall lining.

Jointing

- Jointing and finishing of plasterboard is to be as per the manufacturer’s instructions to meet requirements of AS/NZS 2589:2017.
INSA120a - Steel Frame – 120 minute - INTEGRA Lightweight Concrete with 1 layer of 10mm Standard Plasterboard to both framing lines

Framing to comply with

- NZBC B1 – Structure
- NZBC B2 – Durability
- Studs at 600mm centres maximum
- Nogs/Dwangs at 1200mm centres
- Framing dimensions and height as determined by E2/AS4 (NASH Handboook Best Practice for Design and Construction of Residential and Low Rise Steel Framing)

Barrier to comply with

- NZBC Clause B1 Structure
- NZBC Clause B2 Durability
- NZBC Clause C1-C6 – Protection from Fire
- NZBC Clause F2 Hazardous Building Materials
- NZBC Clause G6 Airborne and Impact Sound

Lining Fixings

- 25mm x 6g Self Tapping Drywall Screws
- Lining Fastener Centres 300mm centres to each stud and plate.
- Place fasteners 12mm from bound sheet edges and 18mm from sheet ends.
- If fixing sheets horizontally, fasteners to be placed at 300mm centres to top and bottom plates and perimeter studs. Install pairs of single fasteners to each stud where horizontal joint crosses.

Acoustic Sealant

- A bead of acoustic sealant is required around the perimeter of the wall lining

Jointing

- Jointing and finishing of plasterboard is to be as per the manufacturer’s instructions to meet requirements of AS/NZS 2589:2017.
INSA120b - Steel Frame – 120 minute - INTEGRA Lightweight Concrete with 1 layer of 13mm Standard Plasterboard to both framing lines

Framing to comply with

- NZBC B1 – Structure
- NZBC B2 – Durability
- Studs at 600mm centres maximum
- Nogs/Dwangs at 1200mm centres
- Framing dimensions and height as determined by E2/AS4 (NASH Handbook Best Practice for Design and Construction of Residential and Low Rise Steel Framing)

Barrier to comply with

- NZBC Clause B1 Structure
- NZBC Clause B2 Durability
- NZBC Clause C1-C6 – Protection from Fire
- NZBC Clause F2 Hazardous Building Materials
- NZBC Clause G6 Airborne and Impact Sound

Linings

- 1 layer of 13mm Standard Plasterboard on the outside of each framing line
- Vertical fixing permitted. Sheets shall be touch fitted.
- When fixing vertically, full height sheets shall be used where possible.
- All sheet joints must be formed over solid framing.
- If the wall lining forms part of the structural bracing system, the lining type and fixings must comply with the published bracing system. Check requirements for specific bracing element hold down connections.

STC Rating - 66
Rw Rating - 65
FRR – 120/120/120
Cavity width – 20-40mm cavity
Wall Width – 296-336mm

Lining Fixings

- 25mm x 6g Self Tapping Drywall Screws
- Lining Fastener Centres 300mm centres to each stud and plate.
- Place fasteners 12mm from bound sheet edges and 18mm from sheet ends.
- If fixing sheets horizontally, fasteners to be placed at 300mm centres to top and bottom plates and perimeter studs. Install pairs of single fasteners to each stud where horizontal joint crosses.

Acoustic Sealant

- A bead of acoustic sealant is required around the perimeter of the wall lining

Jointing

- Jointing and finishing of plasterboard is to be as per the manufacturer’s instructions to meet requirements of AS/NZS 2589:2017.
INSA120c - Steel Frame – 120 minute - INTEGRA Lightweight Concrete with 2 layers of 10mm Standard Plasterboard to both framing lines

Framing to comply with

- NZBC B1 – Structure
- NZBC B2 – Durability
- Studs at 600mm centres maximum
- Nogs/Dwangs at 1200mm centres
- Framing dimensions and height as determined by E2/AS4 (NASH Handbook Best Practice for Design and Construction of Residential and Low Rise Steel Framing)

Barrier to comply with

- NZBC Clause B1 Structure
- NZBC Clause B2 Durability
- NZBC Clause C1-C6 – Protection from Fire
- NZBC Clause F2 Hazardous Building Materials
- NZBC Clause G6 Airborne and Impact Sound

Lining Fixings

- 25mm x 6g Self Tapping Drywall Screws
- Outer Layer: 41mm x 6g Self Tapping Drywall Screws
- Place fasteners 12mm from bound sheet edges and 18mm from sheet ends.
- Fix inner sheets vertically. Where sheet end butt joints are unavoidable they must be formed over framing. Use full height sheets where possible.
- Outer layer: If fixing sheets horizontally, fasteners to be placed at 300mm centres to top and bottom plates and perimeter studs. Install pairs of single fasteners to each stud where horizontal joint crosses. Adhesive fix the outer layer to the inner layer with daubs of acoustic adhesive at 300mm centres. Do not place acoustic adhesive at sheet edges or within 200mm of screw fixings.

Acoustic Sealant

- A bead of acoustic sealant is required around the perimeter of the inner wall lining

Jointing

- Jointing and finishing of plasterboard is to be as per the manufacturer’s instructions to meet requirements of AS/NZS 2589:2017.
INSA120d - Steel Frame – 120 minute - INTEGRA Lightweight Concrete with 1 layer of 10mm Noise Rated Plasterboard to both framing lines

Framing to comply with
- NZBC B1 – Structure
- NZBC B2 – Durability
- Studs at 600mm centres maximum
- Nogs/Dwangs at 1200mm centres
- Framing dimensions and height as determined by E2/AS4 (NASH Handbook Best Practice for Design and Construction of Residential and Low Rise Steel Framing)

Barrier to comply with
- NZBC Clause B1 Structure
- NZBC Clause B2 Durability
- NZBC Clause C1-C6 – Protection from Fire
- NZBC Clause F2 Hazardous Building Materials
- NZBC Clause G6 Airborne and Impact Sound

Linings
- 1 layer of 10mm Noise Rated Plasterboard on the outside of each framing line.
- Vertical fixing permitted. Sheets shall be touch fitted.
- When fixing vertically, full height sheets shall be used where possible.
- All sheet joints must be formed over solid framing.
- If the wall lining forms part of the structural bracing system, the lining type and fixings must comply with the published bracing system. Check requirements for specific bracing element hold down connections.

STC Rating - 66
Rw Rating - 65
FRR – 120/120/120
Cavity width – 20-40mm cavity
Wall Width – 290-330mm

Lining Fixings
- 25mm x 6g Self Tapping Drywall Screws
- Lining Fastener Centres 300mm centres to each stud and plate.
- Place fasteners 12mm from bound sheet edges and 18mm from sheet ends.
- If fixing sheets horizontally, fasteners to be placed at 300mm centres to top and bottom plates and perimeter studs. Install pairs of single fasteners to each stud where horizontal joint crosses.

Acoustic Sealant
- A bead of acoustic sealant is required around the perimeter of the wall lining

Jointing
- Jointing and finishing of plasterboard is to be as per the manufacturer’s instructions to meet requirements of AS/NZS 2589:2017.
INSA120e - Steel Frame – 120 minute - INTEGRA Lightweight Concrete with 1 layer of 13mm Noise Rated Plasterboard to both framing lines

Framing to comply with

• NZBC B1 – Structure
• NZBC B2 – Durability
• Studs at 600mm centres maximum
• Nogs/Dwangs at 1200mm centres

• Framing dimensions and height as determined by E2/AS4 (NASH Handboo Book Best Practice for Design and Construction of Residential and Low Rise Steel Framing)

Barrier to comply with

• NZBC Clause B1 Structure
• NZBC Clause B2 Durability
• NZBC Clause C1-C6 – Protection from Fire

• NZBC Clause F2 Hazardous Building Materials
• NZBC Clause G6 Airborne and Impact Sound Linings

• 1 layer of 13mm Noise Rated Plasterboard on the outside of each framing line.
• Vertical fixing permitted. Sheets shall be touch fitted.
• When fixing vertically, full height sheets shall be used where possible.
• All sheet joints must be formed over solid framing.
• If the wall lining forms part of the structural bracing system, the lining type and fixings must comply with the published bracing system. Check requirements for specific bracing element hold down connections.

STC Rating - 67
Rw Rating - 67
FRR – 120/120/120
Cavity width – 20-40mm cavity
Wall Width – 296-336mm

Lining Fixings

• 25mm x 6g Self Tapping Drywall Screws
• Lining Fastener Centres 300mm centres to each stud and plate.
• Place fasteners 12mm from bound sheet edges and 18mm from sheet ends.
• If fixing sheets horizontally, fasteners to be placed at 300mm centres to top and bottom plates and perimeter studs. Install pairs of single fasteners to each stud where horizontal joint crosses.

Acoustic Sealant

• A bead of acoustic sealant is required around the perimeter of the wall lining

Jointing

• Jointing and finishing of plasterboard is to be as per the manufacturer’s instructions to meet requirements of AS/NZS 2589:2017.
INTEGRA Lightweight Concrete Intertenancy System

Resene Construction Systems Intertenancy System

TradeSpec™ and RenderSpec™ are Registered Trademarks, both Documents are available on the Resene Construction Systems.

INTEGRA Lightweight Concrete Intertenancy System

System

NTS

Date
1 December 2018

Drawing Name
Typical Uses

Scale

Sheet
34.19.01
INTEGRA Lightweight Concrete Intertenancy System

2 Brackets per full size panel, these should be installed on every 2nd stud with the opposing timber framed wall having the brackets installed on the alternating studs.

Plaster Systems: AAC Adhesive to be used to Mortar all Panel Joins.

Cavity size to be 20-40mm wide.

Studs to be located at a maximum of 600 centre and dwangs/nogs at 800mm centres.

Where there is a need for fire-stopping, mineral wool or ceramic fibre cavity insulation must be used, the wool/insulation should have a minimum density of 40kg/m³, or as specified by a fire engineer.

Where fire separations meet other fire separations or fire rated parts of external walls, they shall have the junction fire stopped over its full length.

The Integra Intertenancy System shall terminate as close as possible to the external roof cladding and primary elements providing roof support, with any gaps fully fire stopped.

Plaster Systems: AAC Adhesive to be used to Mortar all Panel Joins.

Cavity size to be 20-40mm wide.

Studs to be located at a maximum of 600 centre and dwangs/nogs at 800mm centres.

Where there is a need for fire-stopping, mineral wool or ceramic fibre cavity insulation must be used, the wool/insulation should have a minimum density of 40kg/m³, or as specified by a fire engineer.

Where fire separations meet other fire separations or fire rated parts of external walls, they shall have the junction fire stopped over its full length.

The Integra Intertenancy System shall terminate as close as possible to the external roof cladding and primary elements providing roof support, with any gaps fully fire stopped.

TradeSpec™ and RenderSpec™ are Registered Trademarks, both Documents are available on the Resene Construction Systems.

Refer to detail 34.19.10

Refer to detail 34.19.92

Refer to detail 34.19.70
2 Brackets per full size panel, these should be installed on every 2nd stud with the opposing timber framed wall having the brackets installed on the alternating studs.
Plaster Systems AAC Adhesive to be used to Mortar all Panel Joins
Cavity size to be 20-40mm wide
Studs to be located at a maximum of 600 centre and dwangs/nogs at 800mm centres.
Where there is a need for fire-stopping, mineral wool or ceramic fibre cavity insulation must be used, the wool/insulation should have a minimum density of 40kg/m³, or as specified by a fire engineer.
Where fire separations meet other fire separations or fire rated parts of external walls, they shall have the junction fire stopped over its full length.
The Integra Intertenancy System shall terminate as close as possible to the external roof cladding and primary elements providing roof support, with any gaps fully fire stopped.
Ensure 2 brackets per full size panel. The location of these brackets in the roof space do not have to meet the same requirements as the liveable areas.

2 Brackets per full size panel, these should be installed on every 2nd stud having the brackets installed on the alternating studs.

Mineral Wool or other appropriate method for fire and acoustic insulation/protection to edge of Intertenancy Wall

Mineral Wool (Refer to Detail 34.19.61)

Plaster Systems & Adhesive to be used to Mortar all Panel Joins

Cavity size to be 20-40mm wide

Studs to be located at a maximum of 600 centre and dwangs/nogs at 800mm centres.

Where there is a need for fire-stopping, mineral wool or ceramic fibre cavity insulation must be used, the wool/insulation should have a minimum density of 40kg/m³, or as specified by a fire engineer.

Where fire separations meet other fire separations or fire rated parts of external walls, they shall have the junction fire stopped over its full length.

The Integra Intertenancy System shall terminate as close as possible to the external roof cladding and primary elements providing roof support, with any gaps fully fire stopped.
2 Brackets per full size panel, these should be installed on every 2nd stud with the opposing timber framed wall having the brackets installed on the alternating studs.

AAC Adhesive

INTEGRA Lightweight Concrete Intertenancy System

Plaster Systems AAC Adhesive to be used to Mortar all Panel Joins

Cavity size to be 20-40mm wide.

Studs to be located at a maximum of 600 centre and dwangs/nogs at 800mm centres.

Where there is a need for fire-stopping, mineral wool or ceramic fibre cavity insulation must be used, the wool/insulation should have a minimum density of 40kg/m³, or as specified by a fire engineer.

Where fire separations meet other fire separations or fire rated parts of external walls, they shall have the junction fire stopped over its full length.

The Integra Intertenancy System shall terminate as close as possible to the external roof cladding and primary elements providing roof support, with any gaps fully fire stopped.

INTEGRA Lightweight Concrete Intertenancy System

Sheet
34.19.10

INTEGRA Lightweight Concrete Intertenancy System

Page 32
2 Brackets per full size panel, these should be installed on every 2nd stud with the opposing timber framed wall having the brackets installed on the alternating studs.

Plaster Systems AAC Adhesive to be used to Mortar all Panel Joins.

Cavity size to be 20-40mm wide

Studs to be located at a maximum of 600mm centres and dwangs/nogs at 800mm centres.

Where there is a need for fire-stopping, mineral wool or ceramic fibre cavity insulation must be used, the wool/insulation should have a minimum density of 40kg/m³, or as specified by a fire engineer

Where fire separations meet other fire separations or fire rated parts of external walls, they shall have the junction fire stopped over its full length.

The Integra Intertenancy System shall terminate as close as possible to the external roof cladding and primary elements providing roof support, with any gaps fully fire stopped.

INTEGRA Lightweight Concrete Intertenancy System

INTEGRA Lightweight Concrete Intertenancy System

INTEGRA Lightweight Concrete Intertenancy System

Resene Construction Systems

CONFIDENTIALITY: No part of this publication may be reproduced or transmitted other than the intended use by Resene Construction Systems without written consent from the author.

TradeSpec™ and RenderSpec™ are Registered Trademarks, both Documents are available on the Resene Construction Systems.
Mineral Wool or Ceramic Fibre Cavity Insulation for fire and acoustic insulation/protection to edge of Intertenancy Wall

2 Brackets per full size panel; these should be installed on every 2nd stud with the opposing timber framed wall having the brackets installed on the alternating studs.

Plaster Systems: AAC Adhesive to be used to Mortar all Panel Joins
Cavity size to be 20-40mm wide
Studs to be located at a maximum of 600 centre and dwangs/nogs at 800mm centres.

Where there is a need for fire-stopping, mineral wool or ceramic fibre cavity insulation must be used, the wool/insulation should have a minimum density of 40kg/m³, or as specified by a fire engineer.

Where fire separations meet other fire separations or fire rated parts of external walls, they shall have the junction fire stopped over its full length.

The Integra Intertenancy System shall terminate as close as possible to the external roof cladding and primary elements providing roof support, with any gaps fully fire stopped.
2 Brackets per full size panel, these should be installed on every 2nd stud with the opposing timber framed wall having the brackets installed on the alternating studs.

Plaster Systems AAC Adhesive to be used to Mortar all Panel Joins.
Cavity size to be 20-40mm wide
Studs to be located at a maximum of 600 centre and dwangs/nogs at 800mm centres.
Where there is a need for fire-stopping, mineral wool or ceramic fibre cavity insulation must be used; the wool/insulation should have a minimum density of 100kg/m³, or as specified by a fire engineer.
Where fire separations meet other fire separations or fire rated parts of external walls, they shall have the junction fire stopped over its full length.
The Integra Intertenancy System shall terminate as close as possible to the external roof cladding and primary elements providing roof support, with any gaps fully fire stopped.

INTEGRA Lightweight Concrete Intertenancy System

CONFIDENTIALITY: No part of this publication may be reproduced or transmitted other than the intended use by Resene Construction Systems without written consent from the author.
Plaster System AAC Adhesive to be used to Mortar all Panel Joins
Cavity size to be 20-40mm wide
Studs to be located at a maximum of 600 centre and dwangs/nogs at 800mm centres.
Where there is a need for fire-stopping, mineral wool or ceramic fibre cavity insulation must be used, the wool/insulation should have a minimum density of 40kg/m³, or as specified by a fire engineer
Where fire separations meet other fire separations or fire rated parts of external walls, they shall have the junction fire stopped over its full length
The Integra Intertenancy System shall terminate as close as possible to the external roof cladding and primary elements providing roof support, with any gaps fully fire stopped

INTEGRA Lightweight Concrete Intertenancy System

System
INTEGRA Lightweight Concrete Intertenancy System

Scale
1: 5 @ A4

Date
1 December 2018

Drawing Name
T-Junction - Intertenancy Wall meeting External Wall

Sheet
34.19.61
2 Brackets per full size panel, these should be installed on every 2nd stud with the opposing timber framed wall having the brackets installed on the alternating studs

Plaster Systems MAC Adhesive to be used to Mortar all Panel Joins

Cavity size to be 20-40mm wide

Studs to be located at a maximum of 600 centre and dwangs/nogs at 800mm centres.

Where there is a need for fire-stopping, mineral wool or ceramic fibre cavity insulation must be used, the wool/insulation should have a minimum density of 40kg/m³, or as specified by a fire engineer

Where fire separations meet other fire separations or fire rated parts of external walls, they shall have the junction fire stopped over its full length

The Integra Intertenancy System shall terminate as close as possible to the external roof cladding and primary elements providing roof support, with any gaps fully fire stopped
INTEGRA Lightweight Concrete Intertenancy System

2 Brackets per full size panel, these should be installed on every 2nd stud with the opposing timber framed wall having the brackets installed on the alternating studs.

Plaster Systems: AAC Adhesive to be used to Mortar all Panel Joins.

Cavity size to be 20-40mm wide.

Studs to be located at a maximum of 600 centre and dwangs/nogs at 800mm centres.

Where there is a need for fire-stopping, mineral wool or ceramic fibre cavity insulation must be used; the wool/insulation should have a minimum density of 40kg/m³, or as specified by a fire engineer.

Where fire separations meet other fire separations or fire rated parts of external walls, they shall have the junction fire stopped over its full length.

The Integra Intertenancy System shall terminate as close as possible to the external roof cladding and primary elements providing roof support, with any gaps fully fire stopped.
INTEGRA Lightweight Concrete Intertenancy System

Mineral Wool or Ceramic Fibre Cavity Insulation for fire and acoustic insulation/protection to edge of Intertenancy Wall

2 Brackets per full size panel, these should be installed on every 2nd stud with the opposing timber framed wall having the brackets installed on the alternating studs.

Plaster Systems AAC Adhesive to be used to Mortar all Panel Joins.
Cavity size to be 20-40mm wide
Studs to be located at a maximum of 600 centre and dwangs/nogs at 800mm centres.

Where there is a need for fire-stopping, mineral wool or ceramic fibre cavity insulation must be used, the wool/insulation should have a minimum density of 40kg/m³, or as specified by a fire engineer.

Where fire separations meet other fire separations or fire rated parts of external walls, they shall have the junction fire stopped over its full length.

The Integra Intertenancy System shall terminate as close as possible to the external roof cladding and primary elements providing roof support, with any gaps fully fire stopped.

CONFIDENTIALITY: No part of this publication may be reproduced or transmitted other than the intended use by Resene Construction Systems without written consent from the author.

TradeSpec™ and RenderSpec™ are Registered Trademarks, both Documents are available on the Resene Construction Systems

INTEGRA Lightweight Concrete Intertenancy System

System
INTEGRA Lightweight Concrete Intertenancy System

Scale
1:5 @ A4

Date
1 December 2018

Drawing Name
Roof Valley

Sheet
34, 19.91
Mineral Wool or Ceramic Fibre Cavity Insulation for fire and acoustic insulation/protection to edge of Intertenancy Wall

2 Brackets per full size panel, these should be installed on every 2nd stud with the opposing timber framed wall having the brackets installed on the alternating studs.

Plaster Systems AMC Adhesive to be used to Mortar all Panel Joins

Cavity size to be 20-40mm wide

Studs to be located at a maximum of 600 centre and dwangs/nogs at 800mm centres.

Where there is a need for fire-stopping, mineral wool or ceramic fibre cavity insulation must be used, the wool/insulation should have a minimum density of 40kg/m³, or as specified by a fire engineer.

Where fire separations meet other fire separations or fire rated parts of external walls, they shall have the junction fire stopped over its full length.

The Integra Intertenancy System shall terminate as close as possible to the external roof cladding and primary elements providing roof support, with any gaps fully fire stopped.

INTEGRA Lightweight Concrete Intertenancy System

System

INTEGRA Lightweight Concrete Intertenancy System

Scale

1: 5 @ A4

Date

1 December 2018

Drawing Name

Roof Ridge

Sheet

34.19.92
Mineral Wool or Ceramic fibre cavity insulation for fire and acoustic insulation/protection to edge of Intertenancy Wall

Ensure 2 brackets per full size panel. The location of these brackets in the roof space do not have to meet the same requirements as the liveable areas.

2 Brackets per full size panel, these should be installed on every 2nd stud with the opposing timber framed wall having the brackets installed on the alternating studs.

Plaster Systems A/C Adhesive to be used to Mortar all Panel Joins.

Cavity size to be 20-40mm wide.

Studs to be located at a maximum of 600 centre and dwangs/nogs at 800mm centres.

Where there is a need for fire-stopping, mineral wool or ceramic fibre cavity insulation must be used, the wool/insulation should have a minimum density of 40kg/m³, or as specified by a fire engineer.

Where fire separations meet other fire separations or fire rated parts of external walls, they shall have the junction fire stopped over its full length.

The Integra Intertenancy System shall terminate as close as possible to the external roof cladding and primary elements providing roof support, with any gaps fully fire stopped.

All parapets should extend not less than 450 mm above the roof to form a parapet, consultation with a Fire Engineer around the parapet height is recommended.

INTEGRA Lightweight Concrete Intertenancy System

34.19.93

Roof Parapet

INTEGRA Lightweight Concrete Intertenancy System

Page 41
Mineral Wool or Ceramic Fibre Cavity Insulation for fire and acoustic insulation/protection to edge of Intertenancy Wall

RCS Intertenancy Bracket to be installed so that it is staggered from the opposing wall

Ensure 2 brackets per full size panel. The location of these brackets in the roof space do not have to meet the same requirements as the livable areas

INTEGRA Lightweight Concrete Intertenancy System

Plaster Systems AAC Adhesive to be used to Mortar all Panel Joins

Cavity size to be 20-40mm wide

Studs to be located at a maximum of 600 mm and dwangs/nogs at 800 mm centres.

Where there is a need for fire-stopping, mineral wool or ceramic fibre cavity insulation must be used, the wool/insulation should have a minimum density of 40kg/m³, or as specified by a fire engineer

Where fire separations meet other fire separations or fire rated parts of external walls, they shall have the junction fire stopped over its full length

The Integra Intertenancy System shall terminate as close as possible to the external roof cladding and primary elements providing roof support, with any gaps fully fire stopped

INTEGRA Lightweight Concrete Intertenancy System

CONFI D E N T I A L I T Y: No part of this publication may be reproduced or transmitted other than the intended use by Resene Construction Systems without written consent from the author.

TradeSpec™ and RenderSpec™ are Registered Trademarks, both Documents are available on the Resene Construction Systems
INTEGRA Lightweight Concrete Intertenancy System

2 Brackets per full size panel, these should be installed on every 2nd stud with the opposing timber framed wall having the brackets installed on the alternating studs.

Mineral Wool or Ceramic Fibre Cavity Insulation for fire and acoustic insulation/protection to edge of Intertenancy Wall

Facade

Plaster Systems: AIC Adhesive to be used to Mortar all Panel Joins.

Cavity size to be 20-40mm wide.

Studs to be located at a maximum of 600mm centre and dwangs/nogs at 800mm centres.

Where there is a need for fire-stopping, mineral wool or ceramic fibre cavity insulation must be used, the wool/insulation should have a minimum density of 40kg/m³, or as specified by a fire engineer.

Where fire separations meet other fire separations or fire rated parts of external walls, they shall have the junction fire stopped over its full length.

The Integra Intertenancy System shall terminate as close as possible to the external roof cladding and primary elements providing roof support, with any gaps fully fire stopped.

INTEGRALIGHTWEIGHT CONCRETE INTER TENANCY SYSTEM

TradeSpec™ and RenderSpec™ are Registered Trademarks, both Documents are available on the Resene Construction Systems

Resene Construction Systems

INTEGRA Lightweight Concrete Intertenancy System

System
INTEGRA Lightweight Concrete Intertenancy System
Scale
1: 5 @ A4
Date
1 December 2018
Drawing Name
Eave
Sheet
34, 19, 96

CONFIDENTIALITY: No part of this publication may be reproduced or transmitted other than the intended use by Resene Construction Systems without written consent from the author.

Page 43
Our Products

<table>
<thead>
<tr>
<th>Rockcote</th>
<th>Plaster Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premium plaster facade systems, pre-coloured, flexible acrylic and mineral coatings for interior and exterior use.</td>
<td>Mineral plasters, and textures for exterior and interior use.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Artisan Natural Materials by Rockcote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bespoke range of natural plasters that enhance and define interior and exterior environments.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Integra Lightweight Concrete Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premium lightweight AAC concrete facade, flooring, intertenancy and fencing systems. Providing impact, fire and acoustic resistance with the durability of lightweight concrete.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Seismolock GRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reinforced plaster strengthening system offering an economical alternative to traditional post construction earthquake strengthening methods.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Graphex</th>
</tr>
</thead>
<tbody>
<tr>
<td>A graphite infused insulation panel specially designed to significantly improve external insulation of your project.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ezyplast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gypsum-based interior hardwall plaster hand applied over concrete blocks, masonry, bricks, metal lath or plaster board.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multiplast</th>
</tr>
</thead>
<tbody>
<tr>
<td>A range of patching, repairing and finishing plasters for masonry substrates.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Villastop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine, sandable finishing plaster for use over cement sheet and other masonry substrates.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multiplast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibre cement sheet jointing system, and repair plaster.</td>
</tr>
</tbody>
</table>

Branches at: Auckland, Tauranga, Napier, Wellington, Christchurch.
www.reseneconstruction.co.nz | 0800 50 70 40